Predicting Urban Flooding Due to Extreme Precipitation Using a Long Short-Term Memory Neural Network

نویسندگان

چکیده

Extreme precipitation events can lead to the exceedance of sewer capacity in urban areas. To mitigate effects flooding, a model is required that capable predicting flood timing and volumes based on forecasts while computational times are significantly low. In this study, long short-term memory (LSTM) neural network set up predict time series at 230 manhole locations present system. For first time, an LSTM applied such large system wide variety synthetic terms intensities patterns also captured training procedure. Even though was trained using events, it found predicts number manholes accurately for historic events. The able reduce forecasting order milliseconds, showing applicability as early flood-warning

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

From Recurrent Neural Network to Long Short Term Memory Architecture

Despite more than 30 years of handwriting recognition research, Recognizing the unconstrained sequence is still a challenge task. The difficulty of segmenting cursive script has led to the low recognition rate. Hidden Markov Models (HMMs) are considered as state-of-theart methods for performing non-constrained handwriting recognition. However, HMMs have several well-known drawbacks. One of thes...

متن کامل

Multi-stream long short-term memory neural network language model

Long Short-Term Memory (LSTM) neural networks are recurrent neural networks that contain memory units that can store contextual information from past inputs for arbitrary amounts of time. A typical LSTM neural network language model is trained by feeding an input sequence. i.e., a stream of words, to the input layer of the network and the output layer predicts the probability of the next word g...

متن کامل

Dialog state tracking using long short-term memory neural networks

Neural network based approaches have recently shown stateof-art performance in the Dialog State Tracking Challenge (DSTC). In DSTC, a tracker is used to assign a label to the state at each moment in an input sequence of a dialog. Specifically, deep neural networks (DNNs) and simple recurrent neural networks (RNNs) have significantly improved the performance of the dialog state tracking. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hydrology

سال: 2022

ISSN: ['2330-7609', '2330-7617']

DOI: https://doi.org/10.3390/hydrology9060105